Smart Homes und assistive Technologien: Lehrveranstaltungen und Informationen zum Studium

Fakten zum Studium

  • Start: September
  • Kosten pro Semester: € 363,36 Studiengebbühr, € 75,- Kostenbeitrag für Zusatzleistungen, € 20,20 ÖH-Beitrag
  • Anwesenheitszeiten im Studium: Montag bis Freitag tagsüber
  • Berufspraktikum im 5. Semester
  • eine Bachelor-Arbeit
  • 180 ECTS-Punkte
  • Möglichkeit für ein Auslandssemester

Lehrveranstaltungen

Unten finden Sie die aktuellen Lehrveranstaltungen des Studiengangs.

Stand: Wintersemester 2020

Für Quereinsteiger ins 3. Semester gilt auch im Wintersemester 2020 noch der Studienplan mit Stand 2019/20 (PDF)

 

1. Semester

Bezeichnung ECTS
SWS
Communication 1 (COMM1)
German / kMod
5.00
-
Kompetenz und Kooperation (KOKO)
German / UE
2.00
1.00

Kurzbeschreibung

Die Lehrveranstaltung fokussiert die eigenverantwortlichen Lernprozesse der Studierenden und vermittelt entsprechende Lernstrategien sowie Techniken und Methoden des Zeit- und Selbstmanagements. Sie dient den Studierenden zum Kennenlernen der Gruppenkolleglnnen und bereitet diese auf eigene Teamarbeiten vor, indem sie ausgewählte Teamkonzepte fallbezogen anwenden und reflektieren.

Lernergebnisse

Nach erfolgreichem Abschluss sind die Studierenden in der Lage, ...

  • Phasenmodelle der Teamentwicklung (z.B. Tuckman) und Teamrollen (z.B. Belbin) zu erläutern und Interventionen für ihre eigene Praxis abzuleiten
  • sich Lerninhalte auf vielfältige Weise anzueignen (Repertoire) und sie gut abrufbar aufzubereiten (z.B. Strukturen, Visualisierungen usw.); dabei berücksichtigen sie die Funktionsweise des Gedächnisses
  • unter Anwendung verschiedener Methoden (z.B. ABC-Analyse, Pomodoro-Technik) Aktivitäten begründet zu priorisieren und deren zeitlichen Ablauf zu planen;
  • persönliche Verhaltensmuster zu bezeichnen und Möglichkeiten zur Musterunterbrechung zu entwickeln und zu beschreiben

Lehrinhalte

  • Teamarbeit: Aufgaben, Rollen, Entwicklung
  • Lernen, Lernmodelle und Lerntechniken
  • Selbst- und Zeitmanagement
Technical English (ENG1)
English / UE
3.00
2.00

Kurzbeschreibung

In the Technical English course, students will expand their language toolkit to allow them to effectively record and apply technical vocabulary and terminology in the context of future engineering topics such as automization, digitalization, machines and materials and 3D Printing. Moreover, students will advance their technical verbal and written skills by creating technical object and technical process descriptions specifically for technical professional audiences and engineering purposes.

Methodik

small and medium tasks and activities; open class inputs and discussion; • individual task completion settings; peer review and discussion

Lernergebnisse

Nach erfolgreichem Abschluss sind die Studierenden in der Lage, ...

  • record and employ technical vocabulary
  • create and understand technical process instructions
  • identify and produce technical text types according to their intended audience and communication purpose (for example a technical article and a process description)

Lehrinhalte

  • Future Trends in Technology (automization, digitalization, machines and materials, 3D printing, AI, and the internet of things.)
  • Visualizing technical descriptions
  • Describing technical visualizations
  • Technical object descriptions
  • Technical process descriptions
  • Technical English talk

Vorkenntnisse

B2 level English

Literatur

  • Murphy, R. (2019). English Grammar in Use, 5th Edition. Klett Verlag.
  • Oshima, A., Hogue, A. (2006). Writing Academic English, 4th Edition. Pearson Longman.

Leistungsbeurteilung

  • 30% Technical Process Description Group Task
  • 30% Technical Process Description Language Task
  • 40% in-class writing (20% writing / 20% applied knowledge)
Digitale Systeme und Computerarchitektur (DSCA)
German / kMod
5.00
-
Digitale Systeme und Computerarchitektur (DSCA)
German / ILV
5.00
3.00
Elektrotechnik (ET)
German / iMod
5.00
-
Elektrotechnik (ET)
German / ILV
5.00
3.00
Elektrotechnik Labor (ETLAB)
German / kMod
5.00
-
Installationstechnik (INSTA)
German / LAB
3.00
2.00
SPS Programmierung (SPS)
German / LAB
2.00
1.00
Hardwarenahe Softwareentwicklung 1 (HWSE)
German / iMod
5.00
-
Hardwarenahe Softwareentwicklung 1 (HWSE1)
German / LAB
5.00
3.00

Kurzbeschreibung

Erlernen des Programmierens mit der Sprache C anhand von hardwarenahen Aufgabenstellungen.

Lernergebnisse

Nach erfolgreichem Abschluss sind die Studierenden in der Lage, ...

  • Programmieraufgaben in einfachere Detailprobleme zu strukturieren, diese abstrakt zu beschreiben und Algorithmen dafür zu erstellen
  • Programme für Mikrocontroller-gesteuerte elektronische Geräte (unter beschränkten Ressourcen) sowie Standard I/O Programme in C basierend auf der ANSI-C Bibliothek modular zu programmieren
  • Programme zu übersetzen, Synthaxfehler zu interpretieren und zu beheben
  • Semantische Fehler systematisch zu debuggen, zu analysieren und zu korrigieren
  • Programmierwerkzeuge (Compiler, Linker, Debugger, Profiler etc.) zielgerichtet einzusetzen.
  • Standard Algorithmen (Ringpuffer, Stacks, Queues, Listen etc.) für typische Problemstellungen elektronischer Systeme auszuwählen sowie diese zu implementieren

Lehrinhalte

  • Grundlagen der Programmiersprache C (Definitionen, Deklarationen, Operationen, Funktionen, Kontrollanweisungen, Pointer und Function Pointer, Pre-Prozessor Anweisungen, Makros, Bitmanipulationen, Datenstrukturen, Speichermanagement, Funktionen der ANSI-C Bibliothek etc.)
  • Programmentwicklung unter beschränkten Ressourcen eingebetteter/elektronischer Systeme
  • Register, Port I/O, Standard I/O, File I/O etc.
  • Implementierung von Übungsaufgaben für ein Mikrocontroller-gesteuertes elektronisches Gerät
  • Implementieren von Funktionen für relevante Algorithmen (bspq. Ringpuffer, Stacks, Queues, Listen), die typ. zur Ansteuerung elektronischer Systeme Verwendung finden
  • Übung zum Umgang mit relevanten Programmierwerkzeugen (Compiler, Linker, Build-Tools etc.)
Mathematik für Engineering Science 1 (MAT1)
German / iMod
5.00
-

Kurzbeschreibung

Die LV „Mathematik für Engineering Science 1“ hat das Ziel, grundlegende mathematische Fertigkeiten und strukturierte Denkweisen zu vermitteln. Die erlernten Methoden sind Bestandteil eines tragfähigen Fundamentes, um aktuelle technische bzw. ingenieurwissenschaftliche Aufgabenstellungen effizient und nachvollziehbar zu lösen bzw. um bestehende Lösungen zu analysieren. Der Schwerpunkt liegt, nach einem grundlegenden Teil, im Bereich der Linearen Algebra.

Lernergebnisse

Nach erfolgreichem Abschluss sind die Studierenden in der Lage, ...

  • Sachverhalte mithilfe der Aussagenlogik und Mengenlehre logisch korrekt zu formulieren, Zahlen in unterschiedlichen Zahlensystemen darzustellen
  • grundlegende Eigenschaften von Funktionen in einer Variablen zu analysieren und im fachrelevanten Kontext zu interpretieren
  • Rechenoperationen mit und Darstellungswechsel von komplexen Zahlen durchzuführen und in der Gauß´schen Zahlenebene geometrisch zu interpretieren; harmonische Schwingungen mithilfe komplexer Zahlen zu beschreiben
  • grundlegende Aufgabenstellungen in allgemeinen Vektorräumen, sowie einfache geometrische Problemstellungen im zwei- und dreidimensionalen euklidischen Raum zu lösen
  • elementare Rechenoperationen mit Matrizen durchzuführen sowie Determinanten und Inverse zu berechnen
  • lineare Gleichungssysteme in Matrixschreibweise mit Hilfe des Gaußalgorithmus zu lösen
  • geometrische Operationen mithilfe linearer Abbildungen durchzuführen
  • Skalarprodukte, orthogonale Projektionen und orthogonale Transformationen zu berechnen und geometrisch zu interpretieren
  • Eigenwerte, Eigenvektoren und Eigenräume zu berechnen

Lehrinhalte

  • Logik und Mengen
  • Zahlenmengen und Zahlensysteme
  • Funktionen
  • Komplexe Zahlen
  • Vektorräume
  • Matrizen und lineare Abbildungen
  • lineare Gleichungssysteme
  • Skalarprodukt und Orthogonalität
  • Eigenwerte und Eigenvektoren
Mathematik für Engineering Science 1 (MAT1)
German / ILV
5.00
3.00

2. Semester

Bezeichnung ECTS
SWS
Assistive Technologien Grundlagen (ATG)
German / kMod
5.00
-
Assistive Technologien Grundlagen (ATGL)
German / ILV
3.00
2.00
Elektronik Labor (ELAB)
German / LAB
2.00
1.00
Communication 2 (COMM2)
German / kMod
5.00
-
Business English (ENG2)
English / UE
3.00
2.00

Kurzbeschreibung

In this Business English course, students will learn how to write clear, compelling, professional text, as well as, expanding their language toolkit to enable them to record and apply business vocabulary and terminology in the context of future trends in Business and Engineering. These trends would include, amongst others, diversity and inclusion, the globalization of the economy and, also, the internationalization of finance. Moreover, students will advance their verbal and written English language skills by applying critical thinking tools in the creation of impact analyses specifically for technical business audiences of the global community.

Methodik

small and medium tasks and activities; open class inputs and discussion; individual task completion settings; peer review and discussion

Lernergebnisse

Nach erfolgreichem Abschluss sind die Studierenden in der Lage, ...

  • record and employ vocabulary for business in technology
  • create a business technology impact analysis
  • articulate both orally and in written form the different ways in which technology impacts business
  • use specific vocabulary and terminology in, for example, leading a meeting

Lehrinhalte

  • Business in Technology (for example finance and investment, the global economy, digital marketing and sales, international teams, and diversity and inclusion)
  • Impact Analyses for Business and Technology
  • Business English Talk

Vorkenntnisse

B2 level English

Literatur

  • Murphy, R. (2019). English Grammar in Use, 5th Edition. Klett Verlag.

Leistungsbeurteilung

  • 30% Business Impact Analysis Group Task
  • 30% Business Impact Analysis Language Task
  • 40% in-class writing
Kreativität und Komplexität (KREKO)
German / UE
2.00
1.00

Kurzbeschreibung

Die Lehrveranstaltung führt in den Prozess der Ideenfindung ein, indem verschiedene Kreativitätstechniken erprobt werden, dabei agieren die Studierenden auch als ModeratorIn unter Einsatz entsprechender Moderationstechniken. Im Rahmen der Lehrveranstaltung setzen sich die Studierenden mit dem Phänomen „Komplexität“ auseinander, entwickeln eine systemische Grundhaltung und trainieren das Erklären komplexer Sachverhalte, insbesondere für Personen ohne größere technische Expertise.

Methodik

Über entsprechende Beispiele, Fallbearbeitungen und Workshop-Einheiten, die sich im Wesentlichen auf die Kurzvideos beziehen.

Lernergebnisse

Nach erfolgreichem Abschluss sind die Studierenden in der Lage, ...

  • eine Kartenabfrage mit anschließender Clusterbildung und Mehrpunktabfrage zu moderieren
  • Vorgehensweisen zu ideenfindung fallorientiert umzusetzen (z.B. laterales Denken, kritisches Denken) sowie ausgewählte Kreativitätstechniken (z.B. Reizwortanalyse, morphologischer Kasten) zu erläutern und anzuwenden
  • eine systemische Denkhaltung einzunehmen und Werkzeuge für den Umgang mit Komplexität zu erläutern und anzuwenden (z.B. Wirkungsgefüge, Papiercomputer)
  • komplexe technische Sachverhalte zielgruppenspezifisch (auch für Nicht-Techniker*innen) zu erklären

Lehrinhalte

  • Moderation von Gruppen
  • Indeenfindung und Kreativität
  • Vernetztes Denken, Umgang mit Komplexität
  • Erklären komplexer Sachverhalte

Vorkenntnisse

Keine

Literatur

  • Dörner, Dietrich: Die Logik des Misslingens: Strategisches Denken in komplexen Situationen, 14. Aufl. 2003
  • Rustler, Florian: Denkwerkzeuge der Kreativität und Innovation – Das kleine Handbuch der Innovationsmethoden, 9. Aufl. 2019
  • Schilling, Gert: Moderation von Gruppen, 2005
  • Vester, Frederic: Die Kunst vernetzt zu denken, 2002

Leistungsbeurteilung

  • MC-Tests, mind. 3 Workshop-Einheiten/Person (z.B. Moderationssequenz, Umsetzung Kreativitätstechnik, Anwendung Papiercomputer, zielgruppengerechtes Erklären eines komplexen Sachverhalts)

Anmerkungen

Keine

Elektronik (EL)
German / iMod
5.00
-
Elektronik (EL)
German / ILV
5.00
3.00
Kommunikationsnetze (CN)
German / iMod
5.00
-
Kommunikationsnetze (CN)
German / ILV
5.00
3.00

Kurzbeschreibung

Grundlagen Kommunikations- und Computernetzwerke.

Lernergebnisse

Nach erfolgreichem Abschluss sind die Studierenden in der Lage, ...

  • die grundlegenden Eigenschaften, sowie Hard- und Software, von Kommunikationsnetzen zu erklären
  • das OSI Layer Model und das TCP Layer Model zu analysieren und wichtige Protokolle, inkl. Vor- und Nachteile, zu benennen
  • ICMP-Applikationen anzuwenden und zu erklären
  • die Berechnung zur Aufteilung eines Netzes in mehrere kleinere Subnetze (Netzwerkadresse, Broadcastadresse, Hostadressen) durchzuführen
  • mittels GNS3 einfache Netze zu konfigurieren(Router)

Lehrinhalte

  • Elemente der technischen Kommunikationsnetze
  • Komponenten und Geräte
  • Klassifikation der Kommunikationsnetze
  • Netzwerk-Topologien
  • Definition und Beispiele der Internetprotokoll-Dienste/Services
  • TCP/IP- und OSI Referenzmodelle
  • Netzwerkmedien und ihre physikalischen Effekte
  • Ethernet und IEEE 802.3 Frames
  • LAN, LAN-Standards
  • IPv4, CIDR, ,VLSM, IPv6
  • Internet Protocol, ARP, ICMP,DHCP,DNS
  • Datagrammformate
  • Forwarding und Routing
  • UDP und TCP
  • Übungen mit GNS3 sowie Konfiguration der Netze
Mathematik für Engineering Science 2 (MAT2)
German / iMod
5.00
-

Kurzbeschreibung

Die LV „Mathematik für Engineering Science 2“ hat das Ziel, grundlegende mathematische Fertigkeiten und strukturierte Denkweisen zu vermitteln. Der Schwerpunkt liegt im Bereich der Analysis.

Lernergebnisse

Nach erfolgreichem Abschluss sind die Studierenden in der Lage, ...

  • Folgen und Reihen hinsichtlich Konvergenz zu untersuchen
  • Grenzwerte bzw. das asymptotische Verhalten von Funktionen zu berechnen
  • die Definition der Ableitung einer Funktion zu erklären und geometrisch zu interpretieren
  • Ableitungsregeln in einem fachrelevant adäquaten Ausmaß anzuwenden
  • Funktionen mithilfe der Differentialrechnung zu analysieren (u.a. hinsichtlich Extremwerten, Krümmungsverhalten) bzw. lokal durch Taylorpolynome zu approximieren
  • bestimmte, unbestimmte und uneigentliche Integrale zu berechnen
  • bestimmte Integrale als Fläche bzw. im fachrelevanten Kontext zu interpretieren
  • gewöhnliche Differentialgleichungen zu klassifizieren
  • grundlegende gewöhnliche Differentialgleichungen mittels Standardmethoden zu lösen und im fachrelevanten Kontext zu interpretieren

Lehrinhalte

  • Folgen, Reihen
  • Differentialrechnung
  • Integralrechnung
  • Gewöhnliche Differentialgleichungen
Mathematik für Engineering Science 2 (MAT2)
German / ILV
5.00
2.00
Mikrocontrollertechnik (MC)
English / iMod
5.00
-
Mikrocontrollertechnik (MC)
English / LAB
5.00
3.00

3. Semester

Bezeichnung ECTS
SWS
Assistive Technologien (AT)
German / kMod
5.00
-
Assistive Technologien Plattformen (ATP)
German / ILV
3.00
2.00
Rapid Prototyping (RP)
German / ILV
2.00
1.00
Assistive Technologien Labor (ATLAB)
German / iMod
5.00
-
Assistive Technologien Labor (ATLAB)
German / LAB
5.00
3.00
Grundlagen der Physik (PHYS)
German / kMod
5.00
-
Grundlagen der Physik für Ingenieurswissenschaften (PHY1)
German / ILV
3.00
1.00

Kurzbeschreibung

Die Lehrveranstaltung „Grundlagen der Physik für Ingenieurswissenschaften“ hat das Ziel, Studierenden Grundkenntnisse im Bereich der technischen Physik zu vermitteln. Insbesondere setzt es sich die Lehrveranstaltung zum Ziel, elementare Grundbegriffe und Sätze der technischen Mechanik bzw. der Theorie des Elektromagnetismus zu diskutieren. Ferner werden die Grundgesetze der Elektrodynamik (Maxwell-Gleichungen und Definition der Lorentzkraft) formuliert. Weiters werden spezielle Konzepte aus dem Bereich der Wärmelehre (Wirkungsgrad) eingeführt und anhand praktischer Applikationen in Physik und Technik diskutiert. Als Grundlage für eine solche Diskussion wird ein Überblick über (in der technischen Mechanik) relevante physikalische Größen (Masse, Impuls, Kraft, Energie, Arbeit, Ladung etc.) bzw. Messgrößen und zugehörige Einheiten gegeben. Weiters wird eine kurze Einführung in die Themenkomplexe Fehlerrechnung bzw. -einschätzung (statistischer versus systematischer Fehler) gegeben. Weitere Fixpunkte der Lehrveranstaltung sind die Einführung der Grundaxiome der Mechanik (Newtonsche Axiome) sowie die Formulierung und Lösung spezieller Bewegungsgleichungen, die in welche in der technischen Mechanik bzw. Elektrodynamik eine wesentliche Rolle spielen (Schwingungsgleichung). Die Gültigkeit von Erhaltungssätzen (Energie-, Impuls-, Drehimpulserhaltungssatz) wird mitdiskutiert.

Lernergebnisse

Nach erfolgreichem Abschluss sind die Studierenden in der Lage, ...

  • physikalische Einheiten korrekt zu verwenden
  • Zusammenhänge zwischen physikalischen Kenngrößen zu erläutern.
  • den Zusammenhang zwischen physikalischen Theorien, Experimenten und ingenieurswissenschaftlichen Anwendungen zu erklären und zu interpretieren.
  • physikalische Gesetze auf praxisbezogene Beispiele anzuwenden
  • Modellbildung, mathematische Lösung und deren Interpretation anhand ausgewählter physikalischer Problemstellungen vorzunehmen
  • quantitative Fragestellungen anhand physikalischer Theorien zu beantworten
  • physikalische Methoden und Gültigkeitsgrenzen auf das spezifische technische Berufsfeld anzuwenden.
  • Plausibilität von Ergebnissen einschätzen

Lehrinhalte

  • Grundlagen der physikalischen Einheiten
  • SI-Einheitensystem
  • Physikalische Grundbegriffe (Geschwindigkeit, Beschleunigung, Kraft, Impuls, Energie, Arbeit, Leistung)
  • Newtonsche Gesetze
  • Kinematik (Schwingungen)
  • Elemente der Wärmelehre
  • Elektrizität und Magnetismus
  • Messfehler, systematische und statistische Fehler
Grundlagenlabor Physik (PHYLB)
German / LAB
2.00
1.00

Kurzbeschreibung

Die Lehrveranstaltung „Grundlagenlabor Physik“ hat zum Ziel, Studierenden experimentelle physikalisch-naturwissenschaftliche Kenntnisse zu vermitteln. Anhand ausgewählter Versuche aus den Bereichen Mechanik, Thermodynamik, Optik und Elektrodynamik werden statistische Methoden der Experimentalphysik, Methoden zur Auswertung und Datenanalyse von Messreihen sowie praktische Labormethoden vermittelt. Die Laborversuche haben zum Ziel, selbstständig Labor-Erfahrung zu sammeln und praktische Kenntnisse zu erwerben. Diese Kenntnisse sind für den gesamten ingenieurwissenschaftlichen Bereich von großem Wert wenn mit Messgrößen und deren Verarbeitung, wie z.B. in Sensorik, Messtechnik oder Embedded Systems gearbeitet wird. Bei der Erstellung von Laborprotokollen und Aufzeichnungen werden Erfahrungen in naturwissenschaftlich-technischer Dokumentation und wissenschaftlichem Arbeiten gesammelt.

Lernergebnisse

Nach erfolgreichem Abschluss sind die Studierenden in der Lage, ...

  • selbstständig physikalische Versuche aufzubauen und durchzuführen
  • Protokolle entsprechend üblichen Standards zu erstellen
  • grundlegende physikalische Prozesse (aus der Mechanik, der Thermodynamik, dem Elektromagnetismus und der Optik) praktisch anzuwenden.
  • beim Schreiben und bei der Analyse von Texten die Grundregeln wissenschaftlichen Arbeitens anzuwenden, und dabei eine wissenschaftliche Herangehensweise von einer nicht wissenschaftlichen (alltagsweltlichen) zu unterscheiden
  • Messergebnisse, gemäß ausgewählter physikalischer Theorien zu interpretieren.
  • die Fehlerauswertung von experimentellen Daten mit den Methoden Mittelwert, Standardabweichung und Gauß’sche Fehlerfortpflanzung vorzunehmen
  • können das Konzept der linearen Regression anwenden und können diesen praktischen Fällen durchführen.

Lehrinhalte

  • Fadenpendel & Statistik
  • Energie & Kalorimetrie
  • Messung von elektromagnetischen Größen
  • Fehlerfortpflanzung, statistischer und systematischer Fehler
Objektorientierte Programmierung und Modellierung (OOPM)
German / kMod
5.00
-
Object Oriented Programming Lab (OOPLAB)
German / LAB
3.00
2.00
Objektorientierte Paradigmen (OOP)
German / ILV
2.00
1.00
Research and Communication Skills (COMM3)
German / kMod
5.00
-
Kommunikation und Kultur (KOKU)
German / UE
2.00
1.00

Kurzbeschreibung

Die Lehrveranstaltung führt in die Grundlagen der Kommunikation und Gesprächsführung ein und vermittelt Möglichkeiten angemessenen Verhaltens in unterschiedlichen beruflichen Kommunikationssituationen (z.B. Konflikte). Im Rahmen der Lehrveranstaltung setzen sich die Studierenden mit dem Phänomen „Kultur“ auseinander und entwickeln Handlungsstrategien für interkulturelle Kontexte.

Methodik

Über entsprechende Beispiele, Fallbearbeitungen und Workshop-Einheiten, die sich im Wesentlichen auf die Kurzvideos beziehen.

Lernergebnisse

Nach erfolgreichem Abschluss sind die Studierenden in der Lage, ...

  • Kommunikationsverhalten unter Verwendung relevanter Modelle (z. B. Schulz v. Thun, Transaktionsanalyse) zu analysieren und eigene Strategien für gesprächsförderndes Verhalten (z.B. Rapport) zu entwickeln;
  • die verschiedenen Stufen eines Konfliktes (z. B. nach dem Eskalationsmodell von Glasl) fallbezogen zu erläutern und angemessene Handlungsmöglichkeiten für Konfliktsituationen zu entwickeln
  • Ebenen von Kultur (z.B. Verhaltensweisen, Glaubenssätze) anhand konkreter Beispiele zu erläutern; situativ angemessene Handlungsmöglichkeiten (interkulturelle Kompetenz) für den Umgang mit kulturellen Unterschieden zu entwickeln.

Lehrinhalte

  • Kommunikation und Gesprächsführung
  • Konfliktmanagement
  • Kulturtheorie
  • Interkulturalität

Vorkenntnisse

Nein

Literatur

  • Doser, Susanne: 30 Minuten Interkulturelle Kompetenz, 5. Aufl. 2012
  • Glasl, Friedrich: Selbsthilfe in Konflikten, 8. Aufl. 2017
  • Greimel-Fuhrmann, Bettina (Hrsg.): Soziale Kompetenz im Management, 2013
  • Weisbach, Christian-Rainer / Sonne-Neubacher, Petra: Professionelle Gesprächsführung, 9. Aufl. 2015

Leistungsbeurteilung

  • LV-immanent

Anmerkungen

Keine

Wissenschaftliches Arbeiten (WIA)
German / UE
3.00
2.00

Kurzbeschreibung

Die Lehrveranstaltung Wissenschaftliches Arbeiten bereitet die Studierenden auf das Verfassen wissenschaftlicher Arbeiten, insbesondere der Bachelorarbeit vor.

Methodik

Die integrierte Lehrveranstaltung besteht aus zwei Teilen: Der Online-Kurs behandelt die Basics des Wissenschaftlichen Arbeitens inkl. grundlegender Statistik. Der fakultätsspezifische Teil führt in die Besonderheiten ihrer Forschungsfelder und die konkrete Bearbeitung diesbezüglicher Themenfelder ein.

Lernergebnisse

Nach erfolgreichem Abschluss sind die Studierenden in der Lage, ...

  • verschiedene Typen wissenschaftlicher Arbeiten zu erklären.
  • die Standards, die wissenschaftliche Arbeiten kennzeichnen, zu erläutern.
  • Themenstellungen zu entwerfen und Forschungsfragen zu formulieren.
  • Arbeitsmethoden für die gewählten Fragestellungen auszuwählen und einzusetzen.
  • eine wissenschaftliche Arbeit formal korrekt zu strukturieren.
  • ein Proposal (Exposé, Disposition) zu einer Seminar- oder Bachelorarbeit zu verfassen.
  • (Literatur-) Recherchen durchzuführen, Quellen zu bewerten und nach wissenschaftlichen Standards zu zitieren.
  • formale und sprachliche Ansprüche an einen wissenschaftlichen Text zu erklären und umzusetzen.
  • Darstellungen grundlegender deskriptiver Statistiken zu verstehen sowie sinnvolle Methoden für die eigenen Fragestellungen zu wählen und anzuwenden.

Lehrinhalte

  • Kriterien der Wissenschaftlichkeit
  • Erkenntnisgewinnungsmethoden und -theorien
  • Typen sowie Strukturierung und Aufbau wissenschaftlicher Arbeiten
  • Richtlinien zur Sicherung guter wissenschaftlicher Praxis
  • Themensuche und –eingrenzung
  • Forschungsfragen - ihre Formulierung, Operationalisierung
  • Strategien der Quellenbeschaffung
  • Dokumentation von Quellen
  • Proposal (Exposé, Disposition)
  • Wissenschaftlicher Schreibstil und Grundzüge der Argumentation
  • Formale Gestaltung wissenschaftlicher Arbeiten
  • Methoden, Anwendungsgebiete und Interpretation deskriptivstatistischer Verfahren.
Steuer- und Regelungstechnik (SRT)
German / kMod
5.00
-
Steuer- und Regelungstechnik (SRT)
German / ILV
3.00
2.00
Steuer- und Regelungstechnik Labor (SRTLAB)
German / LAB
2.00
1.00

4. Semester

Bezeichnung ECTS
SWS
Arbeiten mit bzw. für PatientInnen 1 (AMP1)
German / kMod
5.00
-
Arbeiten mit bzw. für PatientInnen 1 (AMP1)
German / UE
3.00
2.00
Ethik (ETHIK)
German / UE
2.00
1.00
Betriebswirtschaftslehre (BWL)
German / kMod
5.00
-
Rechnungswesen (RW)
German / ILV
2.00
1.00

Kurzbeschreibung

In diesem Teilmodul erwerben die Studierenden grundlegende Kenntnisse auf den Gebieten des externen sowie des internen Rechnungswesens.

Unternehmensführung (UF)
German / ILV
3.00
2.00

Kurzbeschreibung

In diesem Teilmodul erwerben die Studierenden grundlegende Kenntnisse auf den Gebieten normatives, strategisches und operatives Management.

Sensorik und Verarbeitung von Biosignalen (BIO)
German / iMod
5.00
-
Sensorik und Verarbeitung von Biosignalen (BIO)
German / ILV
5.00
3.00
Smart Homes (SH)
German / kMod
5.00
-
Automation Networks (AN)
English / ILV
3.00
2.00
Gebäudesystemtechnik (GST)
German / ILV
2.00
1.00
Smart Homes Labor (SHL)
German / iMod
5.00
-
Smart Homes Labor (SHL)
German / LAB
5.00
3.00
Web Technologien (WEB)
German / iMod
5.00
-
Web Technologien (WEB)
German / ILV
5.00
3.00

5. Semester

Bezeichnung ECTS
SWS
Arbeiten mit bzw. für PatienInnen 2 (AMP2)
German / kMod
5.00
-
Fachspezifische Rechtsmaterien (FR)
German / ILV
2.00
1.00
Marketing und Vertrieb (MKT)
German / ILV
3.00
2.00
IT Security (ITSEC)
English / kMod
5.00
-
IT Security Basics (ITSEC)
English / ILV
3.00
2.00
Software Security (SWSEC)
English / ILV
2.00
1.00
Management und Recht (MANRE)
German / kMod
5.00
-
Projektmanagement (PM)
German / ILV
2.00
1.00

Kurzbeschreibung

Die Veranstaltung vermittelt zentrale Grundlagen sowohl des traditionellen als auch des agilen Projektmanagements.

Methodik

Vortrag, Selbststudium, Diskussion, Übungen, Fallbeispiele, Inverted Classroom

Lernergebnisse

Nach erfolgreichem Abschluss sind die Studierenden in der Lage, ...

  • typische Merkmale von Projekten zu erklären und den Begriff „Projekt“ zu definieren.
  • zwischen Prozessen, Projekten und Programmen zu unterscheiden.
  • verschiedene Projektarten zu unterscheiden und deren spezifische Anforderungen an das Projektmanagement herauszuarbeiten.
  • die wesentlichen Unterschiede zwischen traditionellem und agilem Projektmanagement (z.B. Scrum, Kanban etc.) zu umschreiben.
  • Projektziele hinsichtlich Zeit, Kosten und Ergebnisqualität zu formulieren.
  • die verschiedenen Teilprozesse des Projektmanagementprozesses (z.B. Projektstart, Projektkoordination, Projektcontrolling, Projektmarketing, Projektabschluss etc.) zu unterscheiden und zu umschreiben.
  • verschiedene Projektorganisationsformen (z.B. Einfluss-Projektorganisation, Matrix-Projektorganisation, reine Projektorganisation etc.) zu unterscheiden und deren jeweilige Vor- und Nachteile zu skizzieren.
  • verschiedene Projektstakeholder und Projektrollen (z.B. Projektauftraggeber, Projektleiter, Projektmitarbeiter etc.) zu unterscheiden und zu umschreiben
  • adäquate Führungsstile sowie soziale Kompetenzen (z.B. Teamfähigkeit, Verhandlungsführung, Konfliktmanagement etc.) als wesentliche Voraussetzung für eine erfolgreiche Projektarbeit zu identifizieren.
  • Methoden zur Entwicklung einer förderlichen Projektkultur zu identifizieren
  • Projektpläne zu erstellen (z.B. Strukturplanung, Terminplanung, Terminplanung, Kostenplanung etc.).
  • Methoden und Instrumente der Projektkoordination (z.B. Projektmeetings, To-Do-Listen etc.), des Projektcontrollings (z.B. Soll-Ist-Vergleich, Meilensteintrendanalyse, Projekt-Scorecard etc.), und des Projektmarketings (z.B. Projektvernissagen, Projektwebseite etc.) einzusetzen.
  • Umfeldänderungen, Projektkrisen und geänderten Projektanforderungen situationsadäquat zu managen.
  • Projektabschlussberichte zu verfassen und Projektergebnisse selbstkritisch zu reflektieren (z.B. Lessons Learned etc.).
  • Projektergebnisse vor Projektstakeholdern zu präsentieren und argumentativ zu verteidigen.
  • Besonderheiten der Projektführung beim Einsatz von internationalen und dislozierten Projektteams einzuschätzen
  • die Aufgaben des Projektportfoliomanagements bei der gleichzeitigen Steuerung mehrerer Einzelprojekte zu beschreiben.
  • Projektmanagement-Software zu nutzen.

Lehrinhalte

  • Projektmerkmale
  • Projektbegriff
  • Projektarten
  • Projektorganisationsformen
  • Traditionelles versus agiles Projektmanagement
  • Scrum
  • Projektplanung
  • Projekthandbuch
  • Projektphasen bzw. Projektteilprozesse
  • Projektrollen
  • Führen in Projekten
  • Projektkultur
  • Soziale Kompetenzen
  • Projektmarketing
  • Projektcontrolling
  • Projektkrisen
  • Projektabschlussbericht
  • Projektpräsentation
  • Projektevaluation
  • Projektmanagement-Software
  • Internationales Projektmanagement
  • Projektportfoliomanagement
  • PM-Zertifizierungen
  • Fallbeispiele zum Projektmanagement

Vorkenntnisse

keine

Literatur

  • Timinger, Schnellkurs Projektmanagement, Wiley

Leistungsbeurteilung

  • Schriftliche Abschlussprüfung (online): 80% + Zertifikate Online-Kurs (online): 20% + Zusatzpunkte laufende Mitarbeit

Anmerkungen

Details siehe Moodle-Kurs

Wirtschaftsrecht (RECHT)
German / ILV
3.00
2.00
Verteilte Systeme (VESYS)
German / iMod
5.00
-
Verteilte Systeme (VS)
German / ILV
5.00
3.00
Vertiefungsrichtung 1 (VERT1)
German / iMod
5.00
-
Vertiefungsrichtung 1 (VERT1)
German / ILV
5.00
3.00
Vertiefungsrichtung 2 (VERT2)
German / iMod
5.00
-
Vertiefungsrichtung 2 (VERT2)
German / ILV
5.00
3.00

6. Semester

Bezeichnung ECTS
SWS
Bachelorarbeit (BA)
German / kMod
10.00
-
Bachelorarbeit (BA)
German / EL
8.00
0.00
Bachelorprüfung (BP)
German / EXAM
2.00
1.00
Berufspraktikum (BPRAK)
German / kMod
20.00
-
Berufspraktikum (BPRAK)
German / SO
18.00
0.00
Praktikumsbegleitung und Reflexion (PRAKB)
German / BE
2.00
2.00